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TABLE II
CALCULATED RESULTS FOR THEDEVICE IN [13].

To demonstrate experimental evidence for the validity of the
analysis presented above, the results in [13] are considered, which
show a minimum inRn [13, Fig. 4]. If device parameters [13, page
324] are entered into (6), (7), and (8), the values of Table II are
obtained in agreement with those results. The maximum inRn is
missing in [13, Fig. 4], since it occurs for a very large value of
(�Xs), whereRn ' Rn ' Rn .

VI. CONCLUSION

Closed-form expressions have been presented for the noise param-
eters with parallel and series feedback. It has been demonstrated that
Rn always reaches a maximum and minimum, and the possibility
of Rn = 0 has been pointed out. The same conclusions can be
applied togn, since a duality principle exists. The theory shows that
a minimum in the noise parameterRn or gn of either an active or
passive black box may exist as long as its signal matrix is not purely
real. A previous paper and its results have been used in order to
demonstrate experimental evidence for the correctness of the formulas
presented. This theory may help to design very low noise-feedback
microwave amplifiers.

ACKNOWLEDGMENT

The authors acknowledge the recommendations made by one of
the reviewers concerning the transformations in Section II.

REFERENCES

[1] J. Engberg, “Simultaneous input power match and noise optimization
using feedback,” inProc. 4th European Microwave Conf., Montreaux,
Switzerland, pp. 385–389, 1974.

[2] K. B. Niclas, “Noise in broad band GaAs MESFET amplifiers with
parallel feedback,”IEEE Trans. Microwave Theory Tech., vol. MTT-30,
pp. 63–70, Jan 1982.

[3] , “The exact noise figure of amplifiers with parallel feedback and
lossy matching circuits,”IEEE Trans. Microwave Theory Tech., vol.
MTT-30, pp. 832–835, May 1982.

[4] S. Iversen, “The effect of feedback on noise figure,”Proc. IEEE, vol.
63, pp. 540–542, Mar. 1975.

[5] L. Besser, “Stability considerations of low noise transistor amplifiers
with simultaneous noise and power match,” inIEEE MTT-S Int. Symp.
Dig., Palo Alto, CA, pp. 327–329, May 12–14, 1975.

[6] R. E. Lehmann and D. D. Heston, “X band monolithic series feed-
back LNA,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.
1560–1566, Dec. 1985.

[7] N. Shiga, S. Nakajima, K. Otobe, T. Sekiguchi, N. Kuwata, K.-I.
Matsuzaki, and H. Hayashi, “X band MMIC amplifier with pulsed doped
GaAs MESFETs,”IEEE Trans. Microwave Theory Tech., vol. 39, pp.
1987–1993, Dec. 1991.

[8] H. Rothe and W. Dalke, “Theory of noise four poles,”Proc. IRE, vol.
44 1, pp. 811–818, June 1956.

[9] H. Nyquist, “Thermal agitation of electric charge in conductors,”Phys.
Rev., vol. 32, pp. 110–113, July 1928.

[10] H. Hillbrand and P. H. Russer, “An efficient method for computer aided
noise analysis of linear amplifier networks,”IEEE Trans. Circuits Syst.,
vol. CAS-23, pp. 235–238, Apr. 1976.

[11] K. Hartmann and M. J. O. Strutt, “Changes of the four noise parameters
due to general changes of linear two-port circuit,”IEEE Trans. Electron
Devices, vol. ED-20, pp. 874–877, Oct. 1973.

[12] H. Fukui, “Available power gain, noise figure and noise measure of two
ports and their graphical representation,”IEEE Trans. Circuit Theory,
vol. CT-13, pp. 137–142, June 1966.

[13] G. Vendelin, “Feedback effects on the noise performance of GaAs MES-
FETs,” in IEEE MTT-S Int. Symp. Dig., Palo Alto, CA, pp. 324–326,
May 12–14, 1975.

Investigating Nonlinear Propagation
in Dielectric Slab Waveguides

Jian-Guo Ma

Abstract—A numerical method is employed to analyze the TE-wave
propagation in Kerr-like nonlinear dielectric waveguides in which a
nonlinear film is sandwiched between two linear media. The dispersion
curves dependent on the magnitude of the electric field are obtained. All
the results can be used in future investigations of devices composed of
nonlinear dielectric slab structures.

Index Terms—Dispersion, Kerr-like, nonlinearity, waveguide.

I. INTRODUCTION

It has been apparent for a long time that nonlinear propagation in
optical and millimetric waveguides holds promise in the context of
integrated signal processing [1]. In recent years, with the development
of technology, guided waves in nonlinear dielectric slab waveguides
received considerable attention owing to their potential applications
to optical communications and optical computing.

For the nonlinear core waveguide, a general dispersion equation
was developed in [2], using the modulus of a Jacobian elliptic
function; however, spurious roots then appear in the dispersion
equations [4]. The phase-plane approach was recently used in [1]
to discuss the problem, which provides a physical interpretation of
the results. This method can be applied to arbitrary nonlinearities. In
all other cases, numerical methods such as in [3], [7], and [8], along
with many others, have been employed.

In this paper, another numerical method is used to solve the
nonlinear propagation in slab guides with a nonlinear core. The
method transmits the values of the field from one boundary to another,
therefore, it is called the transfer matrix method (TMM). In [9], the
same idea was successfully used to numerically analyze the nonlinear
planar waveguide with a linear core—a linear film is supported by
a linear medium and covered by a nonlinear medium. In this paper,
global coordinates are used to simplify the problem.
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Fig. 1. A slab guide with a nonlinear core, a linear cladding, and a substrate.

Fig. 2. Dividing the nonlinear Region II inton sub-regions.

II. NUMERICAL METHOD

The schematic drawing of a three-layered slab guide with a Kerr-
like nonlinear guiding film bounded by linear media is shown in
Fig. 1. Restricting ourselves to TE waves, only they-component of
the electric field is nonzero, the electric fieldEy, propagating along
thez axise�j(�z�!t), must satisfy the following equation in Region
II for Kerr-like nonlinearity [1]–[8] with the nonlinear coefficient�:

d2Ey

dx2
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and in Regions I and III:
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Here �r2 is the linear part of the dielectric constant of Region II,
and �ri (i = 1; 3) is the dielectric constant in Regions I and III,
respectively. Solutions in the linear regions are [1], [7]

Ey =
Eoe

k x; x � 0; k2c = �2 � k2o�r1

Eoe
�k (x�d); x � d; k

2

c = �2 � k2o�r3:
(4)

For solving (1) Region II is divided inton sub-regions (as shown in
Fig. 2) and in each sub-regionx 2 [xi�1; xi] (i = 1; 2; � � � ; n) (1)
is valid. Then using the value of the field atx = xi�1; Ey(xi�1)

replacesEy(x) in the term�jEy(x)j
2. Now (1) is linearized to be

reduced to a linear equation in each sub-region[xi�1; xi], approxi-
mately. Its solution is like that in a linear dielectric slab guide. Let

Fig. 3. The dispersion curve of the first TE-mode,TE0 mode.
N = �=ko (�r1 = �r3 = 3:42; �r2 = 3:5 and�> 0):

Ei(x) = Ey(x), x 2 [xi�1; xi] (i = 1; 2; � � � ; n):

Ei(x) = Ai sin (kix) +Bi cos (kix) (5)

with
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From the Maxwell’s equations it is known that using the boundary
conditions atx = xi�1 andx = xi, the field values at the boundaries
can be connected as follows:
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Using (8) repeatedly, the coefficients in the first regionA1, B1 will
be connected to the coefficients in the regionn:
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Using the boundary conditions atx = xo = 0 andx = xn = d, the
dispersion equation can be obtained:
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Eo: (10)

III. RESULTS

As an example, a nonlinear dielectric slab guide is studied with
the parameters:�r1 = �r3 = 3:42, �r2 = 3:5, d = 1�m, and� =

�1:625 � 10�10 (m/V)2 for focusing and defocusing nonlinearity,
respectively. LettingN = �=ko be the effective index of the guide,
the dispersion curves forTE0 and TE1modes dependent on the
magnitude of the field atx = 0, Eo, are given in Figs. 3 and 4,



306 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 3, MARCH 1997

Fig. 4. The dispersion curve of the second TE-mode,TE1 mode.
N = �=ko (�r1 = �r3 = 3:42; �r2 = 3:5 and�> 0):

Fig. 5. The dispersion curves ofTE0 andTE1 modes for the de-focusing
nonlinearity.�r2 = 3:5; �r1 = �r3 = 3:42:

Fig. 6. The cutoff wavenumber ofTE1 versusEo (�r1 = �r3 = 3:42;
�r2 = 3:5):

respectively, for focusing nonlinearity. In Fig. 5 the dispersion curves
of TE0 andTE1 modes for the defocusing nonlinearity are given.

In Figs. 6 and 7 the dependence of the cutoff wavenumber onEo

for TE1 andTE2 modes are shown for both focusing and de-focusing
nonlinearities. From the figures it can be seen that the dispersion
curves for the focusing nonlinear core are always above the linear
dispersion curves and for the defocusing slab guide its dispersion
curves are below the linear ones.

IV. CONCLUSION

In this paper, guided waves in nonlinear planar waveguides have
been studied numerically. It is obvious from the results that the design

Fig. 7. The cutoff wavenumber ofTE2 versusEo (�r1 = �r3 = 3:42;
�r2 = 3:5):

of nonlinear guided waves strongly depends on the magnitude of
the electrical field. The wave propagation properties illustrated here
by numerical calculations are possibly applied to investigate devices
composed of nonlinear planar waveguide structures.
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